
 

 

Practical-3.1  

Student Name:Rajdeep Jaiswal UID: 20BCS2761 

Branch: CSE                                          Section/Group: 902 WM B 

Semester: 05  

Subject Name: Design & Analysis Algorithm        Subject Code: 20CSP-312 

1. Aim: 

Code and analyze to do a depth-first search (DFS) on an undirected graph. Implementing an 
application of DFS such as (i) to find the topological sort of a directed acyclic graph, OR (ii) to 
find a path from source to goal in a maze. 
 

2. Task to be done: 

To implement DFS.  

3. Algorithm: 
Step 1: SET STATUS = 1 (ready state) for each node in G 

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state) 

Step 3: Repeat Steps 4 and 5 until STACK is empty 

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state) 

Step 5: Push on the stack all the neighbours of N that are in the ready state (whose 

STATUS = 1) and set their 

STATUS = 2 (waiting state)[END OF LOOP] 

Step 6: EXIT 
 



 

 

Code: 
 #include <bits/stdc++.h> 
using namespace std; 
  
// Graph class represents a directed graph 
// using adjacency list representation 
class Graph { 
public: 
    map<int, bool> visited; 
    map<int, list<int> > adj; 
  
    // function to add an edge to graph 
    void addEdge(int v, int w); 
  
    // DFS traversal of the vertices 
    // reachable from v 
    void DFS(int v); 
}; 
  
void Graph::addEdge(int v, int w) 
{ 
    adj[v].push_back(w); // Add w to v’s list. 
} 
  
void Graph::DFS(int v) 
{ 
    // Mark the current node as visited and 
    // print it 



 

 

    visited[v] = true; 
    cout << v << " "; 
  
    // Recur for all the vertices adjacent 
    // to this vertex 
    list<int>::iterator i; 
    for (i = adj[v].begin(); i != adj[v].end(); ++i) 
        if (!visited[*i]) 
            DFS(*i); 
} 
  
// Driver's code 
int main() 
{ 
    // Create a graph given in the above diagram 
    Graph g; 
    g.addEdge(0, 1); 
    g.addEdge(0, 2); 
    g.addEdge(1, 2); 
    g.addEdge(2, 0); 
    g.addEdge(2, 3); 
    g.addEdge(3, 3); 
  
    cout << "Following is Depth First Traversal" 
            " (starting from vertex 2) \n"; 
  
    // Function call 
    g.DFS(2); 



 

 

  
    return 0; 
} 

5. Complexity Analysis: 

The Time complexity: O(V + E), where V is the number of vertices and E is the number of 
edges in the graph. 

Auxiliary Space: O(V), since an extra visited array of size V is required. 

 

6. Result: 
            

 
 

 

Learning outcomes (What I have learnt): 

1. Learn about searching technique. 

2. Learn about time complexity of program. 

3. Learnt to implement Depth First Search. 


